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Size of quantum networks
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The metric structure of bosonic scale-free networks and fermionic Cayley-tree networks is analyzed, focus-
ing on the directed distance of nodes from the origin. The topology of the networks strongly depends on the
dynamical parameteF, called the temperature. At=<« we show analytically that the two networks have a
similar behavior: the distance of a generic node from the origin of the network scales as the logarithm of the
number of nodes in the network. At=0 the two networks have an opposite behavior: the bosonic network
remains very clusterizedhe distance from the origin remains constant as the network increases the number of
nodes, while the fermionic network grows following a single branch of the tree, and the distance from the
origin varies as a power law of the number of nodes in the network.
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[. INTRODUCTION fermionic Cayley-tree netwojlevolve around a well defined
core of initial nodes.

Complex networks representing systems of interacting In this paper we focus our attention on the metric struc-
units have been studied and classifig®] according to their  ture of quantum networks and in particular on their size, i.e.,
different geometrical and topological properties. AmongWe estimate the distance measured over directed paths of a
complex networks, scale-free networks, with a power-lawdeneric node from the origin of the network and its depen-
connectivity distribution, have been found to describe differ-dence on the time; at which the node was added to the
ent systems of nature and socig8~5]. Recently, several netwqu. We derive an expression for the_ average value of
models[3—6] have been formulated that generate such structhe distance({(t;)) from the origin of node introduced at
tures, the prototype of them being the Barsibalbert (BA) timet;, mea_sureq on directed pat_hs, in quantum networks at
model [7]. Scale-free networks are particularly interesting | — <+ We find, in agreement withi15-17, that (¢(t;))
because their highly inhomogeneous structure induces pecw-ln(ti) m_th_e bosonlc_ sc_ale-free_: n_etwork and we show for
liar effects in the dynamical models that can be defined on _A(: 3;3!?{ ?/zruaevsloznl?r fﬁ:;m?om&getwg;ktsﬁe network
them, such as the absence of percolafrand an epidemic changes drastically. For ener dFi)strigl}Jltion functign()
threshold 9], the infinite Curie temperature for the paramag- o f%r c—0 the g;(ponenv ofgt){]e power-law connectivity
netic to ferromagnetic transition in the frame of the Ising ;. . .. . ’ z
model [10-13, e?nd the good associative memory of thgdlstr|but|onP(k)~k ” goes fromy=3 atT=x 0 y=2 for

Hoofield model defined work with | T=0, and there is a phase transition at a critical temperature
opTield model detinéd on a NEWWork with 1arge average C_OnTC below which a finite fraction of all the links is connected
nectivity [14]. In addition, the investigation of the metric

X X to a single node. Assuming that the bosonic network is a

structure[15-19 of these networks is of great interest. It (oosonable model for growing scale-free networks, we have,

was first empirically found15] and then analytically derived ¢, example, that the citation netwofR6] with y~3 would

[16,17] that scale-free networks are characterized by haVin%orrespond to & = dynamics while the incoming compo-

a mean distanc¢d) between nodes scaling like the loga- nent of the World Wide Web withy,,=2.1 [7,27] would

rithm of the system sizé&, (d)~In(N). correspond to a low temperature dynamics. Adecreases
The similarities between the structure of a BA networkihe behavior of(€(t;)) also changes, and the distance of

and a traditional Cayley tree have been recently studied. lodei from the origin depends less strongly on the timef

has been found that they share many similarities. In factits arrival. At sufficiently low temperaturef(t;) remains

they are both generated by the subsequent addition of theonstant as a function df. In contrast, in the fermionic

same elementary unia node connected tm links) attached  network, atT=0, when the dynamics becomes extremal, the

to the rest of the network in the direct or reverse directionnetwork evolves far away from the origin and the distance of

[20]. The symmetry between these two types of networks is nodei from the origin of the network grows as a power law

evident if we assume that each nades an innate quality or  of the timet; of its arrival in the network.

“energy” €; and that the dynamics is parametrized by a vari-

able T called the temperature that introduces a “thermal || pSTANCES FROM THE ORIGIN IN THE BOSONIC

noise,” as has been done in self-organized mofi2ls-23. NETWORK

It is possible then to observe that the BA model becomes a

limiting case of a scale-free network described by a Bose The bosonic network is a generalization of the well

distribution of the energies to which the incoming links point known BA network[7]. In this model, a new node witm

[24], while the growing Cayley-tree network is described bylinks is added to the network at each time step. Each mode

a Fermi distribution of the energies at the interfd@&. has an innate quality or “energyé; extracted from a prob-

Quantum networksgthe bosonic scale-free network and the ability distributionp(e€). The way the new links are attached
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follows a generalized preferential attachment rule: the prob-

ability IT; that an existing nodeacquires a new link depends
on both its connectivitk;(t) and its energy;, i.e.,

e Phik(t)

>, e Pesky(t)

@

with the paramete=1/T tuning the relevance of the en-
ergy €; with respect to the connectivity (t). This network
displays a power-law connectivity distributioR(k)~k™”
with ye[2,3] depending on the(e) distribution and the
inverse temperaturg [24].

In the T=00 limit (3=0), the network reduces to a scale-
free BA network[ 7] with an average connectivity of node
i that grows in time as a power law with exponent 1/2:

t
ki(t):m\g,

)

wheret; is the time at which nodé was added to the net-
work. The probabilityp; ; that two nodes andj are con-
nected by a link can be calculated from E#j). Taking into
account that at each tinta new links are added to the net-
work, the probabilityp; ; is given bym times Eq.(1). After
substituting Eq(2) into Eqg. (1), we obtain afT=« (8=0)

~m 1
Pij=% /—titj'

The number of directed paths of lengthconnecting nodeg,
introduced in the network at tinte, to nodei, belonging to
the original core of the networktigzl), is given by the
mean value of the number of paths connecting niottei
and passing through the pointgii,is, ... i¢_1,i¢=1 with
th+1>t,. Indicating each node by the time of its arrival in

)
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FIG. 1. Mean distance from the origi¢¢(t;)) of the nodes
arriving at timet; in a BA network(a bosonic network atf =)
with m=1,2. The solid lines indicate the theoretical prediction, Eq.

(6).

This means that the mean distance between noded a
nodei,, such thattiozl, calculated only on directed paths,

follows a Poisson distribution with average size

m
(€(ty)= §|n(ti) (6)

(see Fig. 1
The distribution of the number of directed paths of length
¢ starting from the origin of the network is proportional to
the integral ofn,(t;) overt;,
p(0) ft (t)dt = )((1 F(€,In(t)/2)) @
« | n =(—m)'1- ———F—
1! L)
In Fig. 2 we show the agreement between the numerical
results and Eq(7) for a bosonic network of ¥Onodes afl

the network, the probability of any directed path is given by=o~ andm=1,2.

the productIT’_,p,_ 1, With t, ;<t,. In order to find

ne(t;) we should sum over all possible paths. Replacing the

sum over the nodes with the integrals ovgr we obtain for
ne(t;)

ne(tj)= L dtlft dty- - Jt dte 1PoaP1,2 * Pe—1-
1 -2

4

Usingty=1, t,=t; and Eq.(3) valid in the T=< limit, we
obtain

(t) (m)gftidt ftidt Jti dy, == 12

n )= —_— .. T T e/ ——

o 2) Ji M)yt G, ity e Jt

1 1'm
= In(t; —. 5
=il 70| 2% ®
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FIG. 2. Distribution of the number of directed paths of length

in a BA network (a bosonic network al =«) for m=1,2. The
solid lines are the analytical predictions, E@).
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<l(t)>

FIG. 4. Distances from the origin in a bosonic network with
m=2 and§=0.5 as a function of3.

FIG. 3. Graphic representation of the bosonic netwéakrep- ri= rkL (10

resents a network witim=1 and energy distribution given by Eq.

(8) where6=0.5 atT=« (B8=0, the BA networl, and(b) repre- | &N K
sents a network with the same parametersand 6 but with T

=1/8=0.33(network in the Bose-Einstein condensate phatke
number of nodes in both networks Né=10°.

J

wherek is the node to which the nodewvas attached at time
t;. From Fig. 3 the change in the topology of the network at
) the critical temperature is clear, with the emergence of a
_ The topology of the bosonic network changes as a funCgjngje node that collects a finite fraction of all the links in the
tion of the temperatur@=1/8. In particular, for a distribu-  g,se-Einstein condensate phase.

tion p(e) such thatp(e)—0 ase—0, we know([24] that As the topology of the network changes, the behavior of
there is a critical temperaturg; below which the network ¢(i) as a function of; changes too. In fact, we have
has a topological transition and its structure is dominated by ' ’

a single node that collects a finite fraction of all the links. For (e(i=a(p)n(t) (11)
T>T. (B<pB.) the network is in the so-called “fit-gets-rich” .
(FGR) phase, while foilT <T (8> f.) the network is in the
_so-ca!led Bo;g-Emsteln condensésEC) phas_e. To V|sual-_ inverse temperaturg=1/T.

ize this transition we have plotted the bosonic network with In Fig. 4 we report(¢(i)) for a bosonic network with

an energy distribution p(e) of the type(8) with #=0.5 andm=2 at different val-
ues of the inverse temperaty8e above and below the criti-
®) cal valueB.=1.7[24]. In order to illustrate the change in the
topology of the network above and below the critical tem-
perature, in Fig. 5 we report the behavior of different rel-
whered=0.5, m=1, abovdFig. 3(@] and below[Fig. 3b)]  €vant structural quantities for a network of sixe= 104,
the phase transition. =0.5, and withm=2 around the critical inverse temperature
The network has been designed in order to underline itg.=1.7. We report the fraction of links attached to the most
hierarchical structure. Starting from the single node at theeonnected node, the exponent of the power-law component
origin of the tree, we have placed all the nodes that ar®f the connectivity distribution, the clustering coefficient,
directly attached to it on a semicircle of unitary radius, eachand the coefficiera (). The fraction of links attached to the

nodei separated from the next one by an anyjle; propor-  most connected netwok,,,(8)/N is the order parameter of
tional to its connectivity, i.e., the FGR-BEC phase transition and increases as a function of
B. The data reported in Fig. 5 are averaged over 100 runs.
k; The connectivity distribution of the bosonic network con-
Agj=——, 9 tains a power-law component plus a point indicating the con-
; densation phenomenon that appearsdor3;. In Fig. 5 we
jeN() report the exponeng(B) of the power-law component of the
connectivity distribution, which decreases as a functiog of
whereN(i) are the nearest neighbors of nodadded at a with an asymptotic value of=2. The data reported in Fig.
time t;>t;. We have repeated the same construction for alb are averaged over 100 runs. The clustering coefficient
the nodes of the network in such a way that all the nearest(B) increases at the transition point while the coefficient
neighbors of nodé are on a semicircle of radius with a(B) slowly decreases, saturating toward a zero value for

where the coefficiena(B) is a decreasing function of the

— 1 4 0.1
p(e)_mfi GE( 1)1
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= (B8=0) for networks ofN=10* nodes withp(e) uniform be-
FIG. 5. Relevant structural quantities in a bosonic network oftween zero and 1 and witm=2,3,4. The solid lines are the theo-

size N=10" with m=2 and #=0.5 as a function of the inverse retical predictions of Eq(20).

temperatures.
whereN;,(t) is the total number of active nodes. Since at
>3.0. The data reported in Fig. 5 for these last two quaneach time step a node of the interface branchesnameéw
tities are averaged over 10 runs. nodes are generated, afteime steps the model generates an
interface ofN,,;(t) nodes, with
Il. DISTANCES FROM THE ORIGIN IN THE FERMIONIC

NETWORK Nine(t)=(m—1)t+1. (14)

The fermionic network{25] is a growing Cayley tree,
where the innate qualities of the nodesergies define their ~ Let us denote by(t,t;) the probability that a node created at
different branching tendencies. Starting at tilmel from a time ti is still at the interface at time Since every nodeof
nodei, at the origin of the network, the nodg at timet  the network grows with probability; [Eqg. (13)] if it is at
=2 grows andm new nodes are directly connected to it. the interface, in the mean fieje(t,t;) follows as
Each node has an energy; extracted from a giverp(e)

distribution. At each time step a new node with connectivity dp(t,t;) p(t,t;)
1 (at the interfacgis chosen to branch, giving rise tonew an Nt (15
nodes.

We assume that nodes with higher energy are more likel

to grow than lower energy ones. In particular we tdkg Replacing Eq(14) in Eq. (1) in the limit t <=, we get the

the probability that a nodeof the interfacewith energye;) solution
grows at timet, to be
;| Ym-1)
eBei p(tt)=|7 (16)
j=——--- (12
efei . . . .
j € mi(t) J Consequently, each nodé¢hat arrives at the interface at time

t; remains at the interface with a probability that decreases in
where the sum in the denominator is extended to all npdestime as a power law. The probability; ; that a nodei is
at the interface Int) at timet. The model depends on the attached to a node(arriving in the network at a later time
inverse temperatur@= 1/T. In the — 0 limit, high and low  t,>t;) is given by the right-hand side of E¢L3) calculated
energy nodes grow with equal probabilities, and the modeht timet; . Taking into account E¢(16) and the raten of the
reduces to th&den modelin the B— o limit the dynamics  addition of new nodes, we obtain o |,
becomes extremal and only the nodes with the highest en-

ergy value are allowed to grow. In this case the model re- m £\ Mm=1)
duces toinvasion percolatiorf28,29 on a Cayley tree. Pi j:—(_'> (17
Let us assume th@@=0 (T=c). The probabilityll; that o (m=Dg g

a nodei of the interface Int{) grows at timet is given by
The numben,(t;) of paths of lengtif that connect a node
.= 1 (13) introduced at time; , to the origini is given by the average
"ON(D) number of paths connecting a nod® a node ; and passing

056119-4



SIZE OF QUANTUM NETWORKS PHYSICAL REVIEW BE57, 056119 (2003

10’
2
A 10
=
Vo
10° ' o op00
G—=EB=5
—< B=10
' A—AR=20
10 | *—% extremal
(X

FIG. 8. Distance from the origin in a fermionic network with
m=2 andp(e) uniformly distributed between zero and 1 at differ-
ent temperatures. AB=0 (T=<) we have the predicted logarith-
FIG. 7. The fermionic network witn=2 at T=c (a) and at  Mic behavior Eq(20), while in the extremal casg= (T=0) the

temperaturél = 0.05 (b). The number of nodes in both networks is network grows as a power law of the network size. The solid line in
N=10 the inset is the power-law fit, E§21), with {=0.55+0.05.

through the pointso,iy,ip, ... i¢—1,i¢=i with ty 1 >t,. The distance of a nodiefrom the origin of the networks
Indicating each node by the time of its arrival in the networkgrowS logarithmically witht; at T=% (8=0). As the tem-

and .th? sum over the nodes by the integrals dverwe  neratyre decreases the behavior 6ft;)) gets steeper. For
obtain forn,(t;) p(e) uniformly distributed between zero and 1, in the ex-
tremal caseT=0 (B==) when the node of highest energy

ny(t) = tidt tidt ti dt grows deterministically at each time step, we have a dramatic
G L, ¢=1PoiP12 " Pe-1¢ change in the behavior, ard(i)) grows as a power law of
(18

and, using Eq(17), we obtain, with a calculation analogous
to Eq. (5), (€(i))e (L)~ (21

1 m (-1
ne(ti)m(m In(ti)>

This means that the mean distance between a haated the
origin follows a Poisson distribution with average size

1\ Ym-1)
n ) (199  ¢=0.55+0.05 from the numerical results reported in Fig. 8.
i

IV. CONCLUSION

In conclusion, we have shown that bosonic and fermionic
m network are not only symmetrically buil20] but also atT
(1)) = mln(ti). (200 = they are characterized by a distan@qt;)) from the
origin that grows like the logarithm of the tim. In con-
) . ) o ~ trast, in the limitT=0 they behave in opposite ways: the
As in the bosonic network, in the fermionic network at infi- posonic network stays highly clusterized with a distance
nite temperature£=0) the distancg¢(t;)) of nodei from  from the origin that remains constant as the network evolves,

the origin grows logarithmically with the timg . ~ but in the fermionic network the distan¢é(t;)) grows like
In Fig. 6 we report the analytical simulation of a fermi- 5 power law of the time; .

onic network withp(e) uniform between zero and 1, at
=00 and form=2,3,4.

As the temperature decreases, the topology of the network
changes drastically. In Fig. 7 we show the Cayley tree with
p(e)=1, €<(0,1), andm=2 at infinite temperature 4 We are grateful to A. Capocci, P. Laureti, and Y.-C. Zhang
=0.0) and at low temperaturg3& 20.0). At high tempera- for useful comments and discussions. This work was finan-
ture the network grows homogeneously in each directiongially supported by the Swiss National Foundation under
while at low temperature it evolves following only a single Grant No. 2051-067733.02/1 and by the European Commis-
branch of the tree. sion Fet Open Project No. COSIN IST-2001-33555.
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