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Size of quantum networks
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~Received 23 January 2003; published 23 May 2003!

The metric structure of bosonic scale-free networks and fermionic Cayley-tree networks is analyzed, focus-
ing on the directed distance of nodes from the origin. The topology of the networks strongly depends on the
dynamical parameterT, called the temperature. AtT5` we show analytically that the two networks have a
similar behavior: the distance of a generic node from the origin of the network scales as the logarithm of the
number of nodes in the network. AtT50 the two networks have an opposite behavior: the bosonic network
remains very clusterized~the distance from the origin remains constant as the network increases the number of
nodes!, while the fermionic network grows following a single branch of the tree, and the distance from the
origin varies as a power law of the number of nodes in the network.
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I. INTRODUCTION

Complex networks representing systems of interact
units have been studied and classified@1,2# according to their
different geometrical and topological properties. Amo
complex networks, scale-free networks, with a power-l
connectivity distribution, have been found to describe diff
ent systems of nature and society@3–5#. Recently, severa
models@3–6# have been formulated that generate such str
tures, the prototype of them being the Baraba´si-Albert ~BA!
model @7#. Scale-free networks are particularly interesti
because their highly inhomogeneous structure induces p
liar effects in the dynamical models that can be defined
them, such as the absence of percolation@8# and an epidemic
threshold@9#, the infinite Curie temperature for the parama
netic to ferromagnetic transition in the frame of the Isi
model @10–13#, and the good associative memory of t
Hopfield model defined on a network with large average c
nectivity @14#. In addition, the investigation of the metri
structure@15–19# of these networks is of great interest.
was first empirically found@15# and then analytically derived
@16,17# that scale-free networks are characterized by hav
a mean distancêd& between nodes scaling like the log
rithm of the system sizeN, ^d&; ln(N).

The similarities between the structure of a BA netwo
and a traditional Cayley tree have been recently studied
has been found that they share many similarities. In f
they are both generated by the subsequent addition of
same elementary unit~a node connected tom links! attached
to the rest of the network in the direct or reverse direct
@20#. The symmetry between these two types of network
evident if we assume that each nodei has an innate quality o
‘‘energy’’ e i and that the dynamics is parametrized by a va
able T called the temperature that introduces a ‘‘therm
noise,’’ as has been done in self-organized models@21–23#.
It is possible then to observe that the BA model become
limiting case of a scale-free network described by a B
distribution of the energies to which the incoming links po
@24#, while the growing Cayley-tree network is described
a Fermi distribution of the energies at the interface@25#.
Quantum networks~the bosonic scale-free network and t
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fermionic Cayley-tree network! evolve around a well defined
core of initial nodes.

In this paper we focus our attention on the metric stru
ture of quantum networks and in particular on their size, i
we estimate the distance measured over directed paths
generic nodei from the origin of the network and its depen
dence on the timet i at which the nodei was added to the
network. We derive an expression for the average value
the distancê ,(t i)& from the origin of nodei introduced at
time t i , measured on directed paths, in quantum network
T5`. We find, in agreement with@15–17#, that ^,(t i)&
; ln(ti) in the bosonic scale-free network and we show
T5` a similar behavior in fermionic networks.

At different values ofT the topology of the network
changes drastically. For energy distribution functionsp(e)
→0 for e→0, the exponentg of the power-law connectivity
distributionP(k);k2g goes fromg53 atT5` to g52 for
T50, and there is a phase transition at a critical tempera
Tc below which a finite fraction of all the links is connecte
to a single node. Assuming that the bosonic network i
reasonable model for growing scale-free networks, we ha
for example, that the citation network@26# with g;3 would
correspond to aT5` dynamics while the incoming compo
nent of the World Wide Web withg in52.1 @7,27# would
correspond to a low temperature dynamics. AsT decreases
the behavior of^,(t i)& also changes, and the distance
nodei from the origin depends less strongly on the timet i of
its arrival. At sufficiently low temperature,,(t i) remains
constant as a function oft i . In contrast, in the fermionic
network, atT50, when the dynamics becomes extremal,
network evolves far away from the origin and the distance
a nodei from the origin of the network grows as a power la
of the timet i of its arrival in the network.

II. DISTANCES FROM THE ORIGIN IN THE BOSONIC
NETWORK

The bosonic network is a generalization of the w
known BA network@7#. In this model, a new node withm
links is added to the network at each time step. Each noi
has an innate quality or ‘‘energy’’e i extracted from a prob-
ability distributionp(e). The way the new links are attache
©2003 The American Physical Society19-1
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follows a generalized preferential attachment rule: the pr
ability P i that an existing nodei acquires a new link depend
on both its connectivityki(t) and its energye i , i.e.,

P i5
e2be iki~ t !

(
s

e2besks~ t !

, ~1!

with the parameterb51/T tuning the relevance of the en
ergy e i with respect to the connectivityki(t). This network
displays a power-law connectivity distributionP(k);k2g

with gP@2,3# depending on thep(e) distribution and the
inverse temperatureb @24#.

In theT5` limit ( b50), the network reduces to a scal
free BA network@7# with an average connectivityki of node
i that grows in time as a power law with exponent 1/2:

ki~ t !5mA t

t i
, ~2!

where t i is the time at which nodei was added to the net
work. The probabilitypi , j that two nodesi and j are con-
nected by a link can be calculated from Eq.~1!. Taking into
account that at each timem new links are added to the ne
work, the probabilitypi , j is given bym times Eq.~1!. After
substituting Eq.~2! into Eq. ~1!, we obtain atT5` (b50)

pi , j5
m

2

1

At i t j

. ~3!

The number of directed paths of length, connecting nodei,
introduced in the network at timet i , to nodei 0, belonging to
the original core of the network (t i 0

51), is given by the

mean value of the number of paths connecting nodei to i 0
and passing through the pointsi 0 ,i 1 ,i 2 , . . . ,i ,21 ,i ,5 i with
tn11.tn . Indicating each node by the time of its arrival
the network, the probability of any directed path is given
the productPn51

, pn21,n with tn21,tn . In order to find
n,(t i) we should sum over all possible paths. Replacing
sum over the nodes with the integrals overtn , we obtain for
n,(t i)

n,~ t i !5E
1

t i
dt1E

t1

t i
dt2•••E

t,22

t i
dt,21p0,1p1,2•••p,21,, .

~4!

Using t051, t,5t i and Eq.~3! valid in theT5` limit, we
obtain

n,~ t i !5S m

2 D ,E
1

t i
dt1E

t1

t i
dt2•••E

t,22

t i
dt,21

1

t1

1

t2
•••

1

t,21

1

At i

5
1

~,21!! S m

2
ln~ t i ! D ,21 m

2At i

. ~5!
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This means that the mean distance between nodei and a
nodei 0, such thatt i 0

51, calculated only on directed path
follows a Poisson distribution with average size

^,~ t i !&5
m

2
ln~ t i ! ~6!

~see Fig. 1!.
The distribution of the number of directed paths of leng

, starting from the origin of the network is proportional
the integral ofn,(t i) over t i ,

P~, !}E
1

t

n,~ t8!dt85~2m!,S 12
G„,, ln~ t !/2…

G~, ! D . ~7!

In Fig. 2 we show the agreement between the numer
results and Eq.~7! for a bosonic network of 104 nodes atT
5` andm51,2.

FIG. 1. Mean distance from the origin̂,(t i)& of the nodes
arriving at timet i in a BA network ~a bosonic network atT5`)
with m51,2. The solid lines indicate the theoretical prediction, E
~6!.

FIG. 2. Distribution of the number of directed paths of length,
in a BA network ~a bosonic network atT5`) for m51,2. The
solid lines are the analytical predictions, Eq.~7!.
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The topology of the bosonic network changes as a fu
tion of the temperatureT51/b. In particular, for a distribu-
tion p(e) such thatp(e)→0 as e→0, we know @24# that
there is a critical temperatureTc below which the network
has a topological transition and its structure is dominated
a single node that collects a finite fraction of all the links. F
T.Tc (b,bc) the network is in the so-called ‘‘fit-gets-rich
~FGR! phase, while forT,Tc (b.bc) the network is in the
so-called Bose-Einstein condensate~BEC! phase. To visual-
ize this transition we have plotted the bosonic network w
an energy distribution

p~e!5
1

u11
eu, eP~0,1!, ~8!

whereu50.5, m51, above@Fig. 3~a!# and below@Fig. 3~b!#
the phase transition.

The network has been designed in order to underline
hierarchical structure. Starting from the single node at
origin of the tree, we have placed all the nodes that
directly attached to it on a semicircle of unitary radius, ea
nodei separated from the next one by an angleDa i propor-
tional to its connectivity, i.e.,

Da i5
ki

(
j PN( i )

kj

, ~9!

whereN( i ) are the nearest neighbors of nodei added at a
time t j.t i . We have repeated the same construction for
the nodes of the network in such a way that all the nea
neighbors of nodei are on a semicircle of radiusr i with

FIG. 3. Graphic representation of the bosonic network.~a! rep-
resents a network withm51 and energy distribution given by Eq
~8! whereu50.5 atT5` (b50, the BA network!, and~b! repre-
sents a network with the same parametersm and u but with T
51/b50.33 ~network in the Bose-Einstein condensate phase!. The
number of nodes in both networks isN5103.
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-

y
r

ts
e
e
h

ll
st

r i5r k

ki
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j PN( i )

kj

, ~10!

wherek is the node to which the nodei was attached at time
t i . From Fig. 3 the change in the topology of the network
the critical temperature is clear, with the emergence o
single node that collects a finite fraction of all the links in t
Bose-Einstein condensate phase.

As the topology of the network changes, the behavior
,( i ) as a function oft i changes too. In fact, we have

^,~ i !&5a~b!ln~ t i !, ~11!

where the coefficienta(b) is a decreasing function of th
inverse temperatureb51/T.

In Fig. 4 we report^,( i )& for a bosonic network with
p(e) of the type~8! with u50.5 andm52 at different val-
ues of the inverse temperatureb, above and below the criti-
cal valuebc51.7 @24#. In order to illustrate the change in th
topology of the network above and below the critical te
perature, in Fig. 5 we report the behavior of different r
evant structural quantities for a network of sizeN5104, u
50.5, and withm52 around the critical inverse temperatu
bc51.7. We report the fraction of links attached to the mo
connected node, the exponent of the power-law compon
of the connectivity distribution, the clustering coefficien
and the coefficienta(b). The fraction of links attached to th
most connected networkkmax(b)/N is the order parameter o
the FGR-BEC phase transition and increases as a functio
b. The data reported in Fig. 5 are averaged over 100 ru
The connectivity distribution of the bosonic network co
tains a power-law component plus a point indicating the c
densation phenomenon that appears forb.bc . In Fig. 5 we
report the exponentg(b) of the power-law component of th
connectivity distribution, which decreases as a function ofb,
with an asymptotic value ofg52. The data reported in Fig
5 are averaged over 100 runs. The clustering coeffic
C(b) increases at the transition point while the coefficie
a(b) slowly decreases, saturating toward a zero value

FIG. 4. Distances from the origin in a bosonic network wi
m52 andu50.5 as a function ofb.
9-3
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b.3.0. The data reported in Fig. 5 for these last two qu
tities are averaged over 10 runs.

III. DISTANCES FROM THE ORIGIN IN THE FERMIONIC
NETWORK

The fermionic network@25# is a growing Cayley tree
where the innate qualities of the nodes~energies! define their
different branching tendencies. Starting at timet51 from a
node i 0 at the origin of the network, the nodei 0 at time t
52 grows andm new nodes are directly connected to
Each nodei has an energye i extracted from a givenp(e)
distribution. At each time step a new node with connectiv
1 ~at the interface! is chosen to branch, giving rise tom new
nodes.

We assume that nodes with higher energy are more lik
to grow than lower energy ones. In particular we takeP i ,
the probability that a nodei of the interface~with energye i)
grows at timet, to be

P i5
ebe i

(
j PInt(t)

ebe j

, ~12!

where the sum in the denominator is extended to all nodj
at the interface Int(t) at time t. The model depends on th
inverse temperatureb51/T. In theb→0 limit, high and low
energy nodes grow with equal probabilities, and the mo
reduces to theEden model. In theb→` limit the dynamics
becomes extremal and only the nodes with the highest
ergy value are allowed to grow. In this case the model
duces toinvasion percolation@28,29# on a Cayley tree.

Let us assume thatb50 (T5`). The probabilityP i that
a nodei of the interface Int(t) grows at timet is given by

P i5
1

NInt~ t !
, ~13!

FIG. 5. Relevant structural quantities in a bosonic network
size N5104 with m52 and u50.5 as a function of the invers
temperatureb.
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whereNInt(t) is the total number of active nodes. Since
each time step a node of the interface branches andm new
nodes are generated, aftert time steps the model generates
interface ofNInt(t) nodes, with

NInt~ t !5~m21!t11. ~14!

Let us denote byr(t,t i) the probability that a node created
time t i is still at the interface at timet. Since every nodei of
the network grows with probabilityP i @Eq. ~13!# if it is at
the interface, in the mean fieldr(t,t i) follows as

]r~ t,t i !

]t
52

r~ t,t i !

NInt~ t !
. ~15!

Replacing Eq.~14! in Eq. ~15! in the limit t→`, we get the
solution

r~ t,t i !5S t i

t D
1/(m21)

. ~16!

Consequently, each nodei that arrives at the interface at tim
t i remains at the interface with a probability that decrease
time as a power law. The probabilitypi , j that a nodei is
attached to a nodej ~arriving in the network at a later time
t j.t i) is given by the right-hand side of Eq.~13! calculated
at timet j . Taking into account Eq.~16! and the ratem of the
addition of new nodes, we obtain forpi , j ,

pi , j5
m

~m21!t j
S t i

t j
D 1/(m21)

. ~17!

The numbern,(t i) of paths of length, that connect a nodei,
introduced at timet i , to the origini 0 is given by the average
number of paths connecting a nodei to a nodei 0 and passing

f

FIG. 6. Distance from the origin in a fermionic network atT
5` (b50) for networks ofN5104 nodes withp(e) uniform be-
tween zero and 1 and withm52,3,4. The solid lines are the theo
retical predictions of Eq.~20!.
9-4
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through the pointsi 0 ,i 1 ,i 2 , . . . ,i ,21 ,i ,5 i with tn11.tn .
Indicating each node by the time of its arrival in the netwo
and the sum over the nodes by the integrals overtn , we
obtain forn,(t i)

n,~ t i !5E
1

t i
dt1E

t1

t i
dt2•••E

t,22

t i
dt,21p01p1,2•••p,21,,

~18!

and, using Eq.~17!, we obtain, with a calculation analogou
to Eq. ~5!,

n,~ t i !
1

~,21!! S m

m21
ln~ t i ! D ,21S 1

t i
D 1/(m21)

. ~19!

This means that the mean distance between a nodet i and the
origin follows a Poisson distribution with average size

^,~ t i !&5
m

m21
ln~ t i !. ~20!

As in the bosonic network, in the fermionic network at in
nite temperature (b50) the distancê,(t i)& of nodei from
the origin grows logarithmically with the timet i .

In Fig. 6 we report the analytical simulation of a ferm
onic network withp(e) uniform between zero and 1, atT
5` and form52,3,4.

As the temperature decreases, the topology of the netw
changes drastically. In Fig. 7 we show the Cayley tree w
p(e)51, eP(0,1), and m52 at infinite temperature (b
50.0) and at low temperature (b520.0). At high tempera-
ture the network grows homogeneously in each directi
while at low temperature it evolves following only a sing
branch of the tree.

FIG. 7. The fermionic network withm52 at T5` ~a! and at
temperatureT50.05 ~b!. The number of nodes in both networks
N5104.
05611
rk
h

,

The distance of a nodei from the origin of the networks
grows logarithmically witht i at T5` (b50). As the tem-
perature decreases the behavior of^,(t i)& gets steeper. Fo
p(e) uniformly distributed between zero and 1, in the e
tremal caseT50 (b5`) when the node of highest energ
grows deterministically at each time step, we have a dram
change in the behavior, and^,( i )& grows as a power law o
t i :

^,~ i !&}~ t i !
z. ~21!

z50.5560.05 from the numerical results reported in Fig.

IV. CONCLUSION

In conclusion, we have shown that bosonic and fermio
network are not only symmetrically built@20# but also atT
5` they are characterized by a distance^,(t i)& from the
origin that grows like the logarithm of the timet i . In con-
trast, in the limitT50 they behave in opposite ways: th
bosonic network stays highly clusterized with a distan
from the origin that remains constant as the network evolv
but in the fermionic network the distance^,(t i)& grows like
a power law of the timet i .
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FIG. 8. Distance from the origin in a fermionic network wit
m52 andp(e) uniformly distributed between zero and 1 at diffe
ent temperatures. Atb50 (T5`) we have the predicted logarith
mic behavior Eq.~20!, while in the extremal caseb5` (T50) the
network grows as a power law of the network size. The solid line
the inset is the power-law fit, Eq.~21!, with z50.5560.05.
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